Estimation of the Lipschitz constant of a function
نویسندگان
چکیده
A number of global optimisation algorithms rely on the value of the Lipschitz constant of the objective function. In this paper we present a stochastic method for estimating the Lipschitz constant. We show that the largest slope in a fixed size sample of slopes has an approximate Reverse Weibull distribution. Such a distribution is fitted to the largest slopes and the location parameter used as an estimator of the Lipschitz constant. Numerical results are presented.
منابع مشابه
POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملEstimation of the cost function of a two-echelon inventory system with lost sales using regression
Multi-echelon inventory systems are one of the most important and attractive areas in modelling supply chain management so that several researches and studies have been done about. In this paper, the total cost function of a two-echelon inventory system with central warehouse and many identical retailers controlled by continuous review inventory policy is estimated. We have assumed the demand i...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملAn effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
ITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 8 شماره
صفحات -
تاریخ انتشار 1996